Matrix decomposition has become a core technology in machine learning, largely due to the development of back propagation algorithm in fitting a neural network. The sole aim of this survey is to give a self-contained introduction to concepts and mathematical tools in numerical linear algebra and matrix analysis in order to seamlessly introduce matrix decomposition techniques and their applications in subsequent sections. However, we clearly realize our inability to cover all the useful and interesting results concerning matrix decomposition and given the paucity of scope to present this discussion, e.g., the separated analysis of the Euclidean space, Hermitian space, and Hilbert space. We refer the reader to literature in the field of linear algebra for a much detailed introduction to the related fields. Some excellent examples include Trefethen and Bau III (1997); Strang (2009); Golub and Van Loan (2013); Beck (2017); Gallier and Quaintance (2017); Boyd and Vandenberghe (2018); Strang (2019); van de Geijn and Myers (2020); Strang (2021). This survey is primarily a summary of purpose, significance of important matrix decomposition methods, e.g., LU, QR, and SVD, and most importantly the origin and complexity of the methods which shed light on their modern applications. Again, this is a decomposition-based survey, thus we will introduce the related background when it is needed. The mathematical prerequisite is a first course in linear algebra. Other than this modest background, the development is self-contained, with rigorous proof provided throughout. Keywords: Matrix decomposition, Computing process, Complexity, Floating point operations (flops), Low-rank approximation, Pivot, LU decomposition for nonzero leading principle minors, CR decomposition, CUR/Skeleton decomposition, Biconjugate decomposition, Coordinate transformation, Hessenberg decomposition.


翻译:其唯一目的是让读者参考线形代数领域的文献,以便详细介绍相关领域的文献。一些极好的例子包括:特雷弗森和鲍三(1997年);斯特朗(2009);戈卢布和范贷款(2013年);贝克(2017年);盖利尔和夸迪松(2017年);博伊德和范登贝格(2018年);斯朗德(2019年);德格罗森和迈尔斯(20202020年);斯特朗德(2021年);这一调查主要概括了直线代数领域的文献,以详细介绍相关领域的文献;一些极好的例子包括特雷弗森和鲍三(1997年);斯特朗德(2009);戈鲁布和范登贝格(2017年);比德罗尔德罗格(2018年);比勒德罗雅(2019年);基地基地基地基地基地基地基地基地基地基地铁/迈尔(2020202020年);斯特朗(2021年)。这一调查主要是关于直线代代代代代代地基地基地基地基地基地基地基地基地基地基地基地基地基、直基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地

1
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
53+阅读 · 2020年9月7日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年9月7日
Arxiv
0+阅读 · 2021年9月7日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员