Knowledge graphs (KGs) are the cornerstone of the semantic web, offering up-to-date representations of real-world entities and relations. Yet large language models (LLMs) remain largely static after pre-training, causing their internal knowledge to become outdated and limiting their utility in time-sensitive web applications. To bridge this gap between dynamic knowledge and static models, a prevalent approach is to enhance LLMs with KGs. However, prevailing methods typically rely on parameter-invasive fine-tuning, which risks catastrophic forgetting and often degrades LLMs' general capabilities. Moreover, their static integration frameworks cannot keep pace with the continuous evolution of real-world KGs, hindering their deployment in dynamic web environments. To bridge this gap, we introduce KGA (\textit{\underline{K}nowledge \underline{G}raph-guided \underline{A}ttention}), a novel framework that dynamically integrates external KGs into LLMs exclusively at inference-time without any parameter modification. Inspired by research on neuroscience, we rewire the self-attention module by innovatively introducing two synergistic pathways: a \textit{bottom-up knowledge fusion} pathway and a \textit{top-down attention guidance} pathway. The \textit{bottom-up pathway} dynamically integrates external knowledge into input representations via input-driven KG fusion, which is akin to the \textit{stimulus-driven attention process} in the human brain. Complementarily, the \textit{top-down pathway} aims to assess the contextual relevance of each triple through a \textit{goal-directed verification process}, thereby suppressing task-irrelevant signals and amplifying knowledge-relevant patterns. By synergistically combining these two pathways, our method supports real-time knowledge fusion. Extensive experiments on four benchmarks verify KGA's strong fusion performance and efficiency.


翻译:暂无翻译

0
下载
关闭预览

相关内容

通过学习、实践或探索所获得的认识、判断或技能。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
12+阅读 · 2022年11月21日
Arxiv
15+阅读 · 2022年5月14日
Arxiv
20+阅读 · 2021年9月22日
Efficiently Embedding Dynamic Knowledge Graphs
Arxiv
14+阅读 · 2019年10月15日
Arxiv
24+阅读 · 2018年10月24日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
12+阅读 · 2022年11月21日
Arxiv
15+阅读 · 2022年5月14日
Arxiv
20+阅读 · 2021年9月22日
Efficiently Embedding Dynamic Knowledge Graphs
Arxiv
14+阅读 · 2019年10月15日
Arxiv
24+阅读 · 2018年10月24日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员