We study the role of the constraint set in determining the solution to low-rank, positive semidefinite (PSD) matrix sensing problems. The setting we consider involves rank-one sensing matrices: In particular, given a set of rank-one projections of an approximately low-rank PSD matrix, we characterize the radius of the set of PSD matrices that satisfy the measurements. This result yields a sampling rate to guarantee singleton solution sets when the true matrix is exactly low-rank, such that the choice of the objective function or the algorithm to be used is inconsequential in its recovery. We discuss applications of this contribution and compare it to recent literature regarding implicit regularization for similar problems. We demonstrate practical implications of this result by applying conic projection methods for PSD matrix recovery without incorporating low-rank regularization.
翻译:我们研究在确定如何解决低级、正半无底基(PSD)矩阵感测问题时所设置的制约的作用。我们认为,这种设置涉及一级感测矩阵:特别是,鉴于对大约低级私营部门司矩阵的一组一级预测,我们确定一套符合测量标准的私营部门司矩阵的半径,从而得出一个抽样率,保证在真实矩阵完全低级时单吨解决方案组合,从而在恢复时选择目标功能或将使用的算法是无关紧要的。我们讨论了这一贡献的应用,并将其与关于类似问题隐含的正规化的最新文献进行比较。我们通过在不纳入低级正规化的情况下对私营部门司矩阵的恢复采用锥形预测方法来证明这一结果的实际影响。