Merging at highway on-ramps while interacting with other human-driven vehicles is challenging for autonomous vehicles (AVs). An efficient route to this challenge requires exploring and exploiting knowledge of the interaction process from demonstrations by humans. However, it is unclear what information (or environmental states) is utilized by the human driver to guide their behavior throughout the whole merging process. This paper provides quantitative analysis and evaluation of the merging behavior at highway on-ramps with congested traffic in a volume of time and space. Two types of social interaction scenarios are considered based on the social preferences of surrounding vehicles: courteous and rude. The significant levels of environmental states for characterizing the interactive merging process are empirically analyzed based on the real-world INTERACTION dataset. Experimental results reveal two fundamental mechanisms in the merging process: 1) Human drivers select different states to make sequential decisions at different moments of task execution, and 2) the social preference of surrounding vehicles can impact variable selection for making decisions. It implies that efficient decision-making design should filter out irrelevant information while considering social preference to achieve comparable human-level performance. These essential findings shed light on developing new decision-making approaches for AVs.


翻译:在与其它人类驱动的车辆进行互动时,在高速路上合并,对于自主车辆(AVs)来说是具有挑战性的。 应对这一挑战的有效途径要求探索和利用人类演示对互动过程的了解。然而,尚不清楚驱动人在整个合并过程中利用了哪些信息(或环境状态)来指导其行为。本文件对在高速路上与拥塞交通时间和空间的拥挤交通合并行为进行了定量分析和评价。两种社会互动情景都基于周围车辆的社会偏好来考虑:礼貌和粗鲁。根据真实世界的InterACTION数据集对互动合并过程的显著环境状态进行了经验分析。实验结果揭示了合并过程中的两个基本机制:(1) 人类驱动人选择了不同的州,以便在任务执行的不同时刻做出顺序决定;(2) 周围车辆的社会偏好会影响决策的可变选择。这意味着高效的决策设计应该筛选出不相干的信息,同时考虑社会偏好以取得类似的人性业绩。这些基本结论揭示了为AVs制定新的决策方法。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
专知会员服务
50+阅读 · 2021年6月30日
【WWW2021】场矩阵分解机推荐系统
专知会员服务
31+阅读 · 2021年2月27日
【DeepMind】强化学习教程,83页ppt
专知会员服务
152+阅读 · 2020年8月7日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Arxiv
6+阅读 · 2018年3月28日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2021年6月30日
【WWW2021】场矩阵分解机推荐系统
专知会员服务
31+阅读 · 2021年2月27日
【DeepMind】强化学习教程,83页ppt
专知会员服务
152+阅读 · 2020年8月7日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Top
微信扫码咨询专知VIP会员