The conditional extremes (CE) framework has proven useful for analysing the joint tail behaviour of random vectors. However, when applied across many locations or variables, it can be difficult to interpret or compare the resulting extremal dependence structures, particularly for high dimensional vectors. To address this, we propose a novel clustering method for multivariate extremes using the CE framework. Our approach introduces a closed-form, computationally efficient dissimilarity measure for multivariate tails, based on the skew-geometric Jensen-Shannon divergence, and is applicable in arbitrary dimensions. Applying standard clustering algorithms to a matrix of pairwise distances, we obtain interpretable groups of random vectors with homogeneous tail dependence. Simulation studies demonstrate that our method outperforms existing approaches for clustering bivariate extremes, and uniquely extends to the multivariate setting. In our application to Irish meteorological data, our clustering identifies spatially coherent regions with similar extremal dependence between precipitation and wind speeds.


翻译:条件极值(CE)框架已被证明在分析随机向量的联合尾部行为方面具有重要价值。然而,当将其应用于多个位置或变量时,所得极值相依结构往往难以解释或比较,尤其对于高维向量而言。为解决这一问题,我们提出了一种基于CE框架的多元极值聚类新方法。该方法基于偏斜几何Jensen-Shannon散度,引入了一种闭式、计算高效的多元尾部相异性度量,适用于任意维度。通过将标准聚类算法应用于成对距离矩阵,我们获得了具有同质尾部相依性的可解释随机向量组。模拟研究表明,我们的方法在二元极值聚类方面优于现有方法,并能独特地扩展到多元场景。在爱尔兰气象数据的应用中,我们的聚类方法识别出了具有相似降水与风速极值相依性的空间连贯区域。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员