Automated planning focuses on strategies, building domain models and synthesizing plans to transit initial states to goals. Natural language processing concerns with the interactions between agents and human language, especially processing and analyzing large amounts of natural language data. These two fields have abilities to generate explicit knowledge, e.g., preconditions and effects of action models, and learn from tacit knowledge, e.g., neural models, respectively. Integrating AI planning and natural language processing effectively improves the communication between human and intelligent agents. This paper outlines the commons and relations between AI planning and natural language processing, argues that each of them can effectively impact on the other one by four areas: (1) planning-based text understanding, (2) planning-based text generation, (3) text-based human-robot interaction, and (4) text-based explainable planning. We also explore some potential future issues between AI planning and natural language processing.
翻译:自然语言处理对代理人与人文之间互动的关切,特别是处理和分析大量自然语言数据。这两个领域都有能力产生明确的知识,例如行动模式的先决条件和影响,并从隐性知识中学习,例如神经模型。将大赦国际规划和自然语言处理结合起来,有效地改善了人类和智能代理人之间的交流。本文概述了大赦国际规划和自然语言处理之间的共同点和关系,指出其中每一个领域都可以对另外四个领域产生有效影响:(1) 基于规划的文本理解,(2)基于规划的文本生成,(3)基于文本的人类机器人互动,(4)基于文本的人类机器人互动,(4)基于文本的可解释规划。我们还探讨了大赦国际规划和自然语言处理之间今后可能发生的一些问题。