Defining the effect of exposure of interest and selecting an appropriate estimation method are prerequisite for causal inference. Understanding the ways in which association between heatwaves (i.e., consecutive days of extreme high temperature) and an outcome depends on whether adjustment was made for temperature and how such adjustment was conducted, is limited. This paper aims to investigate this dependency, demonstrate that temperature is a confounder in heatwave-outcome associations, and introduce a new modeling approach to estimate a new heatwave-outcome relation: E[R(Y)|HW=1, Z]/E[R(Y)|T=OT, Z], where HW is a daily binary variable to indicate the presence of a heatwave; R(Y) is the risk of an outcome, Y; T is a temperature variable; OT is optimal temperature; and Z is a set of confounders including typical confounders but also some types of T as a confounder. We recommend characterization of heatwave-outcome relations and careful selection of modeling approaches to understand the impacts of heatwaves under climate change. We demonstrate our approach using real-world data for Seoul, which suggests that the total effect of heatwaves may be larger than what may be inferred from the extant literature. An R package, HEAT (Heatwave effect Estimation via Adjustment for Temperature), was developed and made publicly available.
翻译:暂无翻译