In this paper, we establish a useful set of formulae for the $\sin\Theta$ distance between the original and the perturbed singular subspaces. These formulae explicitly show that how the perturbation of the original matrix propagates into singular vectors and singular subspaces, thus providing a direct way of analyzing them. Following this, we derive a collection of new results on SVD perturbation related problems, including a tighter bound on the $\ell_{2,\infty}$ norm of the singular vector perturbation errors under Gaussian noise, a new stability analysis of the Principal Component Analysis and an error bound on the singular value thresholding operator. For the latter two, we consider the most general rectangular matrices with full matrix rank.
翻译:在本文中, 我们为原始的和被扰动的单项子空间之间的 $\ sin\ Theta$ 距离建立一套有用的公式。 这些公式明确显示原始矩阵的扰动是如何扩散到单向量和单项子空间的, 从而提供了直接的分析方法 。 在此之后, 我们收集了有关SVD 扰动相关问题的新结果, 其中包括对高西亚噪音下的单项矢量扰动错误 $\ =2,\ infty}$ 标准进行更严格的约束, 对主元组成部分分析进行新的稳定性分析, 对单值阈值操作器进行错误约束 。 对于后两项, 我们考虑的是具有全矩阵级的最一般的矩形矩形矩阵 。