Generative Adversarial Networks (GANs) have shown remarkable success in the computer vision area for producing realistic-looking images. Recently, GAN-based techniques are shown to be promising for spatiotemporal-based applications such as trajectory prediction, events generation and time-series data imputation. While several reviews for GANs in computer vision been presented, nobody has considered addressing the practical applications and challenges relevant to spatio-temporal data. In this paper, we conduct a comprehensive review of the recent developments of GANs in spatio-temporal data. we summarise the popular GAN architectures in spatio-temporal data and common practices for evaluating the performance of spatio-temporal applications with GANs. In the end, we point out the future directions with the hope of benefiting researchers interested in this area.
翻译:生成自动网络(GANs)在制作现实的图像的计算机远景领域取得了显著成功,最近,基于GAN的技术已证明对轨迹预测、事件生成和时间序列数据估算等基于时空的应用很有希望,虽然对计算机远景中的GANs进行了几次审查,但没有人考虑处理与时空数据相关的实际应用和挑战,在本文件中,我们全面审查了GANs在时空数据方面的最新发展情况,我们总结了在时空数据中流行的GAN结构以及评价与GANs的时空应用绩效的通用做法。最后,我们指出未来的方向,希望使该领域的研究人员受益。