With the continuous development of business process management technology, the increasing business process models are usually owned by large enterprises. In large enterprises, different stakeholders may modify the same business process model. In order to better manage the changeability of processes, they adopt configurable business process models to manage process variants. However, the process variants will vary with the change in enterprise business demands. Therefore, it is necessary to explore the co-evolution of the process variants so as to effectively manage the business process family. To this end, a novel framework for co-evolution between business process variants through a configurable process model is proposed in this work. First, the mapping relationship between process variants and configurable models is standardized in this study. A series of change operations and change propagation operations between process variants and configurable models are further defined for achieving propagation. Then, an overall algorithm is proposed for achieving co-evolution of process variants. Next, a prototype is developed for managing change synchronization between process variants and configurable process models. Finally, the effectiveness and efficiency of our proposed process change propagation method are verified based on experiments on two business process datasets. The experimental results show that our approach implements the co-evolution of process variants with high accuracy and efficiency.


翻译:随着业务流程管理技术的不断发展,越来越多的业务流程模型通常由大型企业拥有。在这些大型企业中,不同的利益相关者可能会修改同一个业务流程模型。为了更好地管理流程的可变性,它们采用可配置的业务流程模型来管理流程变体。然而,随着企业业务需求的变化,流程变体也会发生变化。因此,有必要探索流程变体之间的协同演化,以有效地管理业务流程系列。为此,在本工作中提出了一种新的可配置流程模型下业务流程变体协同演化框架。首先,本研究规范了流程变体和可配置模型之间的映射关系。进一步定义流程变体和可配置模型之间的一系列变更操作和变更传播操作,以便实现传播。然后,提出了一个整体算法,用于实现流程变体的协同演化。接下来,开发了一个原型来管理流程变体和可配置流程模型之间的变更同步。最后,基于两个业务流程数据集上的实验验证了我们所提出的流程变更传播方法的有效性和效率,实验结果表明,我们的方法实现了流程变体的高精度和高效性。

0
下载
关闭预览

相关内容

Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
26+阅读 · 2022年2月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
流程/过程挖掘(Process Mining)最新综述
PaperWeekly
23+阅读 · 2022年9月19日
通过Docker安装谷歌足球游戏环境
CreateAMind
11+阅读 · 2019年7月7日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
6+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月19日
Arxiv
76+阅读 · 2022年3月26日
AutoML: A Survey of the State-of-the-Art
Arxiv
69+阅读 · 2019年8月14日
VIP会员
相关VIP内容
Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
26+阅读 · 2022年2月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
6+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员