Objective is to assess the ability of texture features for detecting radiographic patellofemoral osteoarthritis (PFOA) from knee lateral view radiographs. We used lateral view knee radiographs from MOST public use datasets (n = 5507 knees). Patellar region-of-interest (ROI) was automatically detected using landmark detection tool (BoneFinder). Hand-crafted features, based on LocalBinary Patterns (LBP), were then extracted to describe the patellar texture. First, a machine learning model (Gradient Boosting Machine) was trained to detect radiographic PFOA from the LBP features. Furthermore, we used end-to-end trained deep convolutional neural networks (CNNs) directly on the texture patches for detecting the PFOA. The proposed classification models were eventually compared with more conventional reference models that use clinical assessments and participant characteristics such as age, sex, body mass index(BMI), the total WOMAC score, and tibiofemoral Kellgren-Lawrence (KL) grade. Atlas-guided visual assessment of PFOA status by expert readers provided in the MOST public use datasets was used as a classification outcome for the models. Performance of prediction models was assessed using the area under the receiver operating characteristic curve (ROC AUC), the area under the precision-recall (PR) curve-average precision (AP)-, and Brier score in the stratified 5-fold cross validation setting.Of the 5507 knees, 953 (17.3%) had PFOA. AUC and AP for the strongest reference model including age, sex, BMI, WOMAC score, and tibiofemoral KL grade to predict PFOA were 0.817 and 0.487, respectively. Textural ROI classification using CNN significantly improved the prediction performance (ROC AUC= 0.889, AP= 0.714). We present the first study that analyses patellar bone texture for diagnosing PFOA. Our results demonstrates the potential of using texture features of patella to predict PFOA.
翻译:目标是评估从膝部横向视图射电图中检测放射光学帕特洛费马路膝上关节炎(PFOA)的纹理功能的能力。我们使用了来自MOST公开使用的数据集(n=5507膝盖),Patellar区域(ROI)使用里程碑式检测工具自动检测。根据本地Binary模式(LBPP)手工制作的特征随后被提取来描述帕特勒尔纹理。首先,一个机器学习模型(Gradial BoosA机器)接受了培训,从LBBBPP特征中检测了Xal-Descrifer PFOA。我们直接使用经过训练的底部到端深层神经网络来检测PFOA。拟议分类模型最终与更传统的参考模型进行了比较,这些模型使用了年龄、性别、体积指数(BMI)的总分,以及Sioferal Kell-Clawer(KL)的比亚(OL)的直径直径直径分析,使用A(OA-R)的直径直径直径A-S-直径A(OIL)的直径解模型,在A(OA-S-S-S-Risal-R)的直径分析中,在A-S-S-S-I-I-I-S-IL)的直径的S-S-S-S-S-S-S-S-S-S-S-S-S-S-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-