Collaborative robots stand to have an immense impact on both human welfare in domestic service applications and industrial superiority in advanced manufacturing with dexterous assembly. The outstanding challenge is providing robotic fingertips with a physical design that makes them adept at performing dexterous tasks that require high-resolution, calibrated shape reconstruction and force sensing. In this work, we present DenseTact 2.0, an optical-tactile sensor capable of visualizing the deformed surface of a soft fingertip and using that image in a neural network to perform both calibrated shape reconstruction and 6-axis wrench estimation. We demonstrate the sensor accuracy of 0.3633mm per pixel for shape reconstruction, 0.410N for forces, 0.387Nmm for torques, and the ability to calibrate new fingers through transfer learning, which achieves comparable performance with only 12% of the non-transfer learning dataset size.
翻译:协作机器人在家庭服务应用方面对人类福利和在先进制造中具有超模组装的工业优势都产生巨大影响。 突出的挑战是如何向机器人指尖提供物理设计,使其能胜任执行需要高分辨率、校准形状重建和力感测的极具任务。 在这项工作中,我们展示了DenseTact 2.0光学触觉传感器,它能够直观软指尖的变形表面,并在神经网络中使用该图像进行校准形状重建和6轴扳手估计。 我们展示了每像素0.3633毫米的传感器精度,用于形状重建的传感器精度为0.410毫米,用于部队的传感器精度为0.387毫米,用于托盘的传感器精度为0.387毫米,以及通过转移学习校准新手指的能力,通过转移学习只达到12%的非传输学习数据集大小的类似性能。</s>