Objective digital data is scarce yet needed in many domains to enable research that can transform the standard of healthcare. While data from consumer-grade wearables and smartphones is more accessible, there is critical need for similar data from clinical-grade devices used by patients with a diagnosed condition. The prevalence of wearable medical devices in the diabetes domain sets the stage for unique research and development within this field and beyond. However, the scarcity of open-source datasets presents a major barrier to progress. To facilitate broader research on diabetes-relevant problems and accelerate development of robust computational solutions, we provide the DiaTrend dataset. The DiaTrend dataset is composed of intensive longitudinal data from wearable medical devices, including a total of 27,561 days of continuous glucose monitor data and 8,220 days of insulin pump data from 54 patients with diabetes. This dataset is useful for developing novel analytic solutions that can reduce the disease burden for people living with diabetes and increase knowledge on chronic condition management in outpatient settings.
翻译:摘要:客观数字数据在许多领域都很稀缺,但需要它来实现能够改变医疗保健标准的研究。虽然来自消费级可穿戴设备和智能手机的数据更容易获得,但是来自已确诊条件的病人所使用的临床级设备相似的数据的需求十分迫切。糖尿病领域可穿戴医疗设备的普及为该领域及其他领域内的研究和开发提供了独特的机遇。然而,开源数据集的稀缺性成为了研究进展的一个重大障碍。为了促进在糖尿病相关问题上的广泛研究,并加快在门诊环境中开发健全的计算解决方案,我们提供了DiaTrend数据集。DiaTrend数据集由可穿戴医疗设备的强度纵向数据组成,其中包括54位糖尿病患者的总计27,561天的连续血糖监测数据和8,220天的胰岛素泵数据。该数据集有助于开发新的分析解决方案,从而减轻糖尿病患者的疾病负担,并增加门诊管理慢性病的知识。