We study distributed algorithms built around edge contraction based vertex sparsifiers, and give sublinear round algorithms in the $\textsf{CONGEST}$ model for exact mincost flow, negative weight shortest paths, maxflow, and bipartite matching on sparse graphs. For the maxflow problem, this is the first exact distributed algorithm that applies to directed graphs, while the previous work by [Ghaffari et al. SICOMP'18] considered the approximate setting and works only for undirected graphs. For the mincost flow and the negative weight shortest path problems, our results constitute the first exact distributed algorithms running in a sublinear number of rounds. These algorithms follow the celebrated Laplacian paradigm, which numerically solve combinatorial graph problems via series of linear systems in graph Laplacian matrices. To enable Laplacian based algorithms in the distributed setting, we develop a Laplacian solver based upon the subspace sparsifiers of [Li, Schild FOCS'18]. We give a parallel variant of their algorithm that avoids the sampling of random spanning trees, and analyze it using matrix martingales. Combining this vertex reduction recursively with both tree and elimination based preconditioners leads to an algorithm for solving Laplacian systems on $n$ vertex graphs to high accuracy in $O(n^{o(1)}(\sqrt{n}+D))$ rounds. The round complexity of this distributed solver almost matches the lower bound of $\widetilde{\Omega}(\sqrt{n}+D)$.
翻译:我们研究的是围绕以边缘收缩为基础的顶点封闭仪的分布式算法 { 分布式算法 { 分布式算法 { 分布式算法, 在 $\ textsf{ CONSEST} 美元模型中提供 精确的微成本流、 负重量最短路径、 最大流和 稀释图上的双方匹配。 对于最大流问题, 这是第一个适用于定向图形的精确分布式算法, 而 [Ghaffari 和 al. SICOMP' 18] 之前的工作只考虑未定向图形的大致设置和工作 。 对于小成本流和负重量最短路径问题, 我们的结果构成了第一个精确分布式算法 。 这些算法遵循了庆祝过的拉普拉普尔西亚模式, 以线性系统的形式解决了拉普拉普拉卡西亚的图表问题。 我们用一个平行的算法变量, 避免了以O值的精确度为基数的基数, 将O 的基数的基数的基数的基数 用于降低 。