The simplest and often most effective way of parallelizing the training of complex machine learning models is to execute several training instances on multiple machines, possibly scanning the hyperparameter space to optimize the underlying statistical model and the learning procedure. Often, such a meta learning procedure is limited by the ability of accessing securely a common database organizing the knowledge of the previous and ongoing trials. Exploiting opportunistic GPUs provided in different environments represents a further challenge when designing such optimization campaigns. In this contribution we discuss how a set of RestAPIs can be used to access a dedicated service based on INFN Cloud to monitor and possibly coordinate multiple training instances, with gradient-less optimization techniques, via simple HTTP requests. The service, named Hopaas (Hyperparameter OPtimization As A Service), is made of web interface and sets of APIs implemented with a FastAPI back-end running through Uvicorn and NGINX in a virtual instance of INFN Cloud. The optimization algorithms are currently based on Bayesian techniques as provided by Optuna. A Python front-end is also made available for quick prototyping. We present applications to hyperparameter optimization campaigns performed combining private, INFN Cloud and CINECA resources.


翻译:将复杂机器学习模式的培训与复杂机器学习模式培训平行化的最简单而且往往是最有效的方法是在多机器上执行若干培训实例,可能扫描超光度空间,以优化基本统计模式和学习程序;这种元学习程序往往受到以下因素的限制:能够安全地访问一个共同数据库,以组织先前和正在进行的试验的知识;在设计这种优化运动时,利用在不同环境中提供的机会机会性GPPU是另一个挑战;在设计这种优化运动时,我们讨论了如何利用一套复式API来利用基于INNF Clound的专用服务来监测和可能协调多种培训实例,通过简单的HTTTP请求,使用无梯优化技术来监测并协调多个培训实例;称为Hopaas(Hyperparameter Opitimization as A Service)的服务是用网络接口和APIs集成的成套实施,其快速API通过Uvicorn和NGINX在虚拟情况下运行。在Apptuna提供的Bayesian技术上,目前优化算法以Optuna提供的Bython前端技术为基础。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
19+阅读 · 2022年10月6日
VIP会员
相关VIP内容
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员