As a general model compression paradigm, feature-based knowledge distillation allows the student model to learn expressive features from the teacher counterpart. In this paper, we mainly focus on designing an effective feature-distillation framework and propose a spatial-channel adaptive masked distillation (AMD) network for object detection. More specifically, in order to accurately reconstruct important feature regions, we first perform attention-guided feature masking on the feature map of the student network, such that we can identify the important features via spatially adaptive feature masking instead of random masking in the previous methods. In addition, we employ a simple and efficient module to allow the student network channel to be adaptive, improving its model capability in object perception and detection. In contrast to the previous methods, more crucial object-aware features can be reconstructed and learned from the proposed network, which is conducive to accurate object detection. The empirical experiments demonstrate the superiority of our method: with the help of our proposed distillation method, the student networks report 41.3\%, 42.4\%, and 42.7\% mAP scores when RetinaNet, Cascade Mask-RCNN and RepPoints are respectively used as the teacher framework for object detection, which outperforms the previous state-of-the-art distillation methods including FGD and MGD.


翻译:作为一般模型压缩模式,基于地貌的知识蒸馏法使学生模型能够从教师对应方学习表达特征。在本文中,我们主要侧重于设计一个有效的地貌蒸馏框架,并提出一个用于物体探测的空间通道适应性掩码蒸馏(AMD)网络。更具体地说,为了准确重建重要的地貌区域,我们首先在学生网络特征图上进行关注引导掩码,这样我们就可以通过空间适应性掩码而不是在以往方法中随机遮罩来确定重要特征。此外,我们使用一个简单而有效的模块,使学生网络频道能够适应性,提高学生网络在物体感知和探测方面的示范能力。与以往的方法不同,更关键的天体觉蒸馏(AMD)功能可以重建,并从拟议的网络中学习,这有助于准确的物体探测。实验实验显示了我们方法的优越性:借助我们提议的蒸馏方法,学生网络报告41.3 ⁇,42.4 ⁇,以及42.7 ⁇ mAP分数,当RetinaNet、Cassidead-RCNNN和Repress-GDGD 分别用作教师前制模制模的测试框架。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月21日
Arxiv
10+阅读 · 2021年2月26日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员