Deep Learning is able to solve a plethora of once impossible problems. However, they are vulnerable to input adversarial attacks preventing them from being autonomously deployed in critical applications. Several algorithm-centered works have discussed methods to cause adversarial attacks and improve adversarial robustness of a Deep Neural Network (DNN). In this work, we elicit the advantages and vulnerabilities of hybrid 6T-8T memories to improve the adversarial robustness and cause adversarial attacks on DNNs. We show that bit-error noise in hybrid memories due to erroneous 6T-SRAM cells have deterministic behaviour based on the hybrid memory configurations (V_DD, 8T-6T ratio). This controlled noise (surgical noise) can be strategically introduced into specific DNN layers to improve the adversarial accuracy of DNNs. At the same time, surgical noise can be carefully injected into the DNN parameters stored in hybrid memory to cause adversarial attacks. To improve the adversarial robustness of DNNs using surgical noise, we propose a methodology to select appropriate DNN layers and their corresponding hybrid memory configurations to introduce the required surgical noise. Using this, we achieve 2-8% higher adversarial accuracy without re-training against white-box attacks like FGSM, than the baseline models (with no surgical noise introduced). To demonstrate adversarial attacks using surgical noise, we design a novel, white-box attack on DNN parameters stored in hybrid memory banks that causes the DNN inference accuracy to drop by more than 60% with over 90% confidence value. We support our claims with experiments, performed using benchmark datasets-CIFAR10 and CIFAR100 on VGG19 and ResNet18 networks.


翻译:深层学习能够解决大量曾经不可能解决的问题。 但是, 他们很容易被投入的对抗性攻击阻止他们自主地在关键应用程序中部署。 一些以算法为中心的工作讨论了导致对抗性攻击的方法,并提高深神经网络(DNN)的对抗性稳健性。 在这项工作中, 我们利用6T-8T混合记忆的优点和脆弱性来改善对抗性强力, 并导致对DNN的对抗性攻击。 我们显示, 6T- SRAM细胞错误的精确度导致混合记忆中的比特性拉动噪音, 使得他们无法在混合记忆配置( V_DDD, 8T-6T比率)的基础上进行确定性的行为。 这种受控的噪音( 表面噪音) 可以战略性地引入特定的 DNNNW 层, 以提高 DNNN的对抗性能。 我们用60NCR的常规值, 和相应的混合记忆配置来选择适当的 DNNIC 结构, 来引入所需的手术性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性的硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性的硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性的硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性的硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Diganta Misra等人提出新激活函数Mish,在一些任务上超越RuLU
专知会员服务
14+阅读 · 2019年10月15日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年1月17日
Arxiv
12+阅读 · 2020年12月10日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员