This paper presents a new method to solve a dynamic sensor fusion problem. We consider a large number of remote sensors which measure a common Gauss-Markov process and encoders that transmit the measurements to a data fusion center through the resource restricted communication network. The proposed approach heuristically minimizes a weighted sum of communication costs subject to a constraint on the state estimation error at the fusion center. The communication costs are quantified as the expected bitrates from the sensors to the fusion center. We show that the problem as formulated is a difference-of-convex program and apply the convex-concave procedure (CCP) to obtain a heuristic solution. We consider a 1D heat transfer model and 2D target tracking by a drone swarm model for numerical studies. Through these simulations, we observe that our proposed approach has a tendency to assign zero data rate to unnecessary sensors indicating that our approach is sparsity promoting, and an effective sensor selection heuristic.
翻译:本文提出了解决动态传感器聚合问题的新方法。 我们考虑了大量测算通用高斯- 马尔科夫进程和编码器的远程传感器,这些传感器通过资源限制通信网络将测量结果传送到数据聚变中心。 拟议的方法超自然地将通信费用的加权总和最小化, 但要受聚变中心国家估计错误的限制。 通信成本被量化为传感器到聚变中心的预期比特率。 我们显示, 所设计的问题是一个电离子程序, 并应用二次曲线组合程序( CCP) 来获得超常解决方案。 我们考虑的是1D热传输模型和2D目标追踪模型, 由无人机群模型进行数字研究。 我们观察到, 通过这些模拟, 我们的拟议方法倾向于将零数据率指定给不必要的传感器, 表明我们的方法是促进恐慌, 并且是一种有效的传感器选择超常。