In this paper, by exploiting the powerful ability of deep learning, we devote to designing a well-performing and pilot-saving neural network for the channel estimation in underwater acoustic (UWA) orthogonal frequency division multiplexing (OFDM) communications. By considering the channel estimation problem as a matrix completion problem, we interestingly find it mathematically equivalent to the image super-resolution problem arising in the field of image processing. Hence, we attempt to make use of the very deep super-resolution neural network (VDSR), one of the most typical neural networks to solve the image super-resolution problem, to handle our problem. However, there still exist significant differences between these two problems, we thus elegantly modify the basic framework of the VDSR to design our channel estimation neural network, referred to as the channel super-resolution neural network (CSRNet). Moreover, instead of training an individual network for each considered signal-to-noise ratio (SNR), we obtain an unified network that works well for all SNRs with the help of transfer learning, thus substantially increasing the practicality of the CSRNet. Simulation results validate the superiority of the CSRNet against the existing least square (LS) and deep neural network (DNN) based algorithms in terms of the mean square error (MSE) and the bit error rate (BER). Specifically, compared with the LS algorithm, the CSRNet can reduce the BER by 44.74% even using 50% fewer pilots.


翻译:在本文中,我们利用深层学习的强大能力,致力于为水下声学(UWA)或地心频率分多氧化(OFDM)通信中的频道估计设计一个运行良好和试点保存的神经网络。通过将频道估计问题视为矩阵完成问题,我们有趣的是发现它与图像处理领域出现的图像超级解析问题在数学上等同于。因此,我们试图利用非常深的超分辨率神经网络(VDSR)这一最典型的神经网络之一,解决图像超解问题,处理我们的问题。然而,这两个问题之间仍然存在着巨大的差异,因此我们优雅地修改了VDSR的基本框架,以设计频道估计神经网络,称为频道超级分辨率网络(CSRNet ) 问题。此外,我们没有为每个被视为信号-神经比率(SNRRR) 培训一个单独的网络,我们获得一个统一的网络,这个网络在帮助传输学习方面运作良好,从而大大提高了C-74网络的实用性,从而大大提高了C-SR网络的实用性,而SNRIS 和S 平方的逻辑(C-NR) 以C Ral 的精确度(CR) 和CR) 的逻辑(C-C-C-BR) 以C-C-BR) 以C-BAR-B-ral-ral 的比平基 的平基的逻辑计算率(C-C-ral 和正的比的比的逻辑的精确性) 的逻辑计算率(C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-R-R-R-ral-ral-ral-ral-ral-ral-ral-ral-ral-ral-ral-ral-ral-ral 的精确的精确-ral-ral-ral-ral-ral-ral-ralbal-ral-ral-ral-ral-ral-ral-ral-ral-ral-ral-ral-ral-ral-ral-ral-ral-ral-ral-ral-ral-ral-ral-ral-r

0
下载
关闭预览

相关内容

【耶鲁】数据结构与编程技术,656页pdf
专知会员服务
56+阅读 · 2021年4月26日
【耶鲁】数据结构与编程技术,572页pdf
专知会员服务
47+阅读 · 2020年12月27日
【Manning新书】现代Java实战,592页pdf
专知会员服务
100+阅读 · 2020年5月22日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年4月28日
Arxiv
8+阅读 · 2018年11月27日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员