A new nonlinear hyperelastic bending model for shells formulated directly in surface form is presented, and compared to four prominently used bending models. Through an essential set of elementary nonlinear bending test cases, the stresses and moments of each model are examined analytically. Only the proposed bending model passes all the test cases while the other bending models either fail or only pass the test cases for small deformations. The proposed new bending model can handle large deformations and initially curved surfaces. It is based on the principal curvatures and their directions in the initial configuration, and it thus can have different bending moduli along those directions. These characteristics make it flexible in modeling a given material, while it does not suffer from the pathologies of existing bending models. Further, the bending models are compared computationally through four classical benchmark examples and one contact example. As the underlying shell theory is based on Kirchhoff-Love kinematics, isogeometric NURBS shape functions are used to discretize the shell surface. The linearization and efficient finite element implementation of the proposed new model are also provided.


翻译:本文提出了一种新的非线性、超弹性曲面直接形式下的弯曲模型,与四个广泛使用的弯曲模型进行了比较。通过一组重要的非线性弯曲测试案例,分析了每种模型的应力和力矩。只有新提出的弯曲模型通过了所有测试案例,而其他弯曲模型则在大变形的情况下失败或仅在小变形的情况下通过测试案例。建议的新弯曲模型可以处理大变形和最初的曲面,基于初始配置的主曲率及其方向,因此可以沿这些方向具有不同的弯曲模量。这些特征使它在模拟给定材料时具有灵活性,而且不会遭受现有弯曲模型的病态。此外,比较了弯曲模型在计算上的性能,并通过四个经典基准案例和一个接触案例进行了比较。由于壳体理论基于 Kirchhoff-Love运动学原理,因此使用等几何 NURBS形状函数对壳体表面进行离散化。此外,提供了新模型的线性化和有效有限元实现。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Java8 Lambda实现源码解析
阿里技术
2+阅读 · 2022年11月22日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
TensorFlow 2.0新特性之Ragged Tensor
深度学习每日摘要
18+阅读 · 2019年4月5日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
手把手教你用Python库Keras做预测(附代码)
数据派THU
14+阅读 · 2018年5月30日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月23日
Arxiv
0+阅读 · 2023年5月18日
VIP会员
相关资讯
Java8 Lambda实现源码解析
阿里技术
2+阅读 · 2022年11月22日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
TensorFlow 2.0新特性之Ragged Tensor
深度学习每日摘要
18+阅读 · 2019年4月5日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
手把手教你用Python库Keras做预测(附代码)
数据派THU
14+阅读 · 2018年5月30日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员