With the booming demand for machine learning applications, it has been recognized that the number of knowledgeable data scientists can not scale with the growing data volumes and application needs in our digital world. In response to this demand, several automated machine learning (AutoML) frameworks have been developed to fill the gap of human expertise by automating the process of building machine learning pipelines. Each framework comes with different heuristics-based design decisions. In this study, we present a comprehensive evaluation and comparison of the performance characteristics of six popular AutoML frameworks, namely, AutoWeka, AutoSKlearn, TPOT, Recipe, ATM, and SmartML, across 100 data sets from established AutoML benchmark suites. Our experimental evaluation considers different aspects for its comparison, including the performance impact of several design decisions, including time budget, size of search space, meta-learning, and ensemble construction. The results of our study reveal various interesting insights that can significantly guide and impact the design of AutoML frameworks.
翻译:随着机器学习应用的需求增长,人们认识到知识丰富的数据科学家无法跟上数字世界中不断增长的数据和应用需求。为了满足这个需求,出现了几种自动化机器学习 (AutoML) 框架,通过自动化构建机器学习管道来填补人力专业知识的空缺。每个框架都有不同的基于启发式的设计决策。在本研究中,我们介绍了六种流行的自动化机器学习框架,分别是 AutoWeka、AutoSKlearn、TPOT、Recipe、ATM 和 SmartML,在已建立的 AutoML 基准测试套件中对 100 个数据集的性能特征进行了全面评估和对比。我们的实验评估考虑了不同方面的比较,包括时间预算、搜索空间大小、元学习和集合构建等设计决策的性能影响。我们研究的结果揭示了一些有趣的见解,这些见解可以对 AutoML 框架的设计产生重大的指导和影响。