Learning the cumulative distribution function (CDF) of an outcome variable conditional on a set of features remains challenging, especially in high-dimensional settings. Conditional transformation models provide a semi-parametric approach that allows to model a large class of conditional CDFs without an explicit parametric distribution assumption and with only a few parameters. Existing estimation approaches within the class of transformation models are, however, either limited in their complexity and applicability to unstructured data sources such as images or text, or can incorporate complex effects of different features but lack interpretability. We close this gap by introducing the class of deep conditional transformation models which unify existing approaches and allow to learn both interpretable (non-)linear model terms and more complex predictors in one holistic neural network. To this end we propose a novel network architecture, provide details on different model definitions and derive suitable constraints and derive suitable network regularization terms. We demonstrate the efficacy of our approach through numerical experiments and applications.
翻译:以一系列特征为条件的结果变量累积分布功能(CDF)的学习仍然具有挑战性,特别是在高维环境中。条件变换模型提供了半参数方法,允许在没有明确的参数分布假设和仅有几个参数的情况下模拟一大批有条件的CDF模型。但是,在变换模型类别中现有的估计方法要么其复杂性和对图象或文字等非结构化数据源的适用性有限,要么可以纳入不同特征的复杂影响,但缺乏解释性。我们通过引入一系列深度有条件变换模型来弥补这一差距,这些模型将现有方法统一起来,并能够在一个整体神经网络中学习可解释(非线性)的模型术语和更复杂的预测器。我们为此提出一个新的网络结构,提供关于不同模型定义的细节,提出适当的限制,并得出适当的网络正规化术语。我们通过数字实验和应用来展示我们的方法的有效性。