When AI tools can generate many solutions, some human preference must be applied to determine which solution is relevant to the current project. One way to find those preferences is interactive search-based software engineering (iSBSE) where humans can influence the search process. Current iSBSE methods can lead to cognitive fatigue (when they overwhelm humans with too many overly elaborate questions). WHUN is an iSBSE algorithm that avoids that problem. Due to its recursive clustering procedure, WHUN only pesters humans for $O(log_2{N})$ interactions. Further, each interaction is mediated via a feature selection procedure that reduces the number of asked questions. When compared to prior state-of-the-art iSBSE systems, WHUN runs faster, asks fewer questions, and achieves better solutions that are within $0.1\%$ of the best solutions seen in our sample space. More importantly, WHUN scales to large problems (in our experiments, models with 1000 variables can be explored with half a dozen interactions where, each time, we ask only four questions). Accordingly, we recommend WHUN as a baseline against which future iSBSE work should be compared. To facilitate that, all our scripts are online at https://github.com/ai-se/whun.
翻译:当AI工具能够产生许多解决方案时,必须运用人类偏好来确定哪些解决方案与当前项目相关。此外,找到这些偏好的方法之一是交互式基于搜索的软件工程(ISBSE),让人类能够影响搜索过程。目前的ISBSSE方法可能导致认知疲劳(当它们用太多过于复杂的问题压倒人类时)。WHUN是一种iSBSE算法,可以避免这一问题。由于它的循环组合程序,WHUN只能为$O(log_2{N})的相互作用提供人类害虫。此外,每一种互动都是通过一个功能选择程序来调解的,这样可以减少被问问题的数量。与以前最先进的ISBSSE系统相比,WHUN运行得更快,提出较少的问题,并实现更好的解决方案,这些解决方案在我们的抽样空间所看到的最佳解决方案的0.1美元之内。更重要的是,WHUN的规模是大问题(在我们的实验中,有1000个变量的模型可以用半打的相互作用来探索,每次我们只问四个问题 ) 。因此,我们建议WHUSUN作为未来IMSE/hhun的基线,我们所有的脚本应该进行比较。