There is a vast amount of data generated every second due to the rapidly growing technology in the current world. This area of research attempts to determine the feelings or opinions of people on social media posts. The dataset we used was a multi-source dataset from the comment section of various social networking sites like Twitter, Reddit, etc. Natural Language Processing Techniques were employed to perform sentiment analysis on the obtained dataset. In this paper, we provide a comparative analysis using techniques of lexicon-based, machine learning and deep learning approaches. The Machine Learning algorithm used in this work is Naive Bayes, the Lexicon-based approach used in this work is TextBlob, and the deep-learning algorithm used in this work is LSTM.
翻译:由于当今世界技术的迅猛发展,每秒就产生大量数据。这个研究领域试图确定人们在社交媒体上的感受或观点。我们使用的数据集是来自Twitter、Reddit等各种社交网站评论部分的多来源数据集。自然语言处理技术被用于对所获得的数据集进行情感分析。在本文中,我们利用基于词汇、机器学习和深层学习方法等技术进行了比较分析。这项工作使用的机器学习算法是Naive Bayes, 这项工作中使用的基于LextBlob 的词汇法是LextBlob, 这项工作使用的深层次学习算法是LSTM。