Despite end-to-end neural systems making significant progress in the last decade for task-oriented as well as chit-chat based dialogue systems, most dialogue systems rely on hybrid approaches which use a combination of rule-based, retrieval and generative approaches for generating a set of ranked responses. Such dialogue systems need to rely on a fallback mechanism to respond to out-of-domain or novel user queries which are not answerable within the scope of the dialog system. While, dialog systems today rely on static and unnatural responses like "I don't know the answer to that question" or "I'm not sure about that", we design a neural approach which generates responses which are contextually aware with the user query as well as say no to the user. Such customized responses provide paraphrasing ability and contextualization as well as improve the interaction with the user and reduce dialogue monotonicity. Our simple approach makes use of rules over dependency parses and a text-to-text transformer fine-tuned on synthetic data of question-response pairs generating highly relevant, grammatical as well as diverse questions. We perform automatic and manual evaluations to demonstrate the efficacy of the system.


翻译:尽管在过去十年中,终端到终端神经系统在任务导向和聊天对话系统方面取得了重大进展,但大多数对话系统都依赖混合方法,这些方法使用基于规则、检索和基因化方法的组合,以产生一系列分级答复。这些对话系统需要依赖一个后备机制,以回应在对话系统范围内无法回答的外部或新用户询问。虽然对话系统目前依赖于静态和非自然的响应,如“我不知道这个问题的答案”或“我不确定”等,但我们设计了一个神经方法,产生与用户查询相关的响应,并对用户说不。这些定制的响应提供了参数化能力和背景化,并改进了与用户的互动,减少了对话的单一性。我们的简单方法利用了依赖面规则,并用文本到文本的变换器对问题组合的合成数据进行了微调,生成了高度相关的、语法化和多样化的问题。我们进行了自动和手工评估,以展示系统的效率。

0
下载
关闭预览

相关内容

专知会员服务
36+阅读 · 2020年11月29日
最新《Transformers模型》教程,64页ppt
专知会员服务
312+阅读 · 2020年11月26日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
109+阅读 · 2020年6月10日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
已删除
架构文摘
3+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
哈工大SCIR多名师生参加COLING 2018
哈工大SCIR
10+阅读 · 2018年9月1日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
论文笔记 | How NOT To Evaluate Your Dialogue System
科技创新与创业
13+阅读 · 2017年12月23日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
The Gutenberg Dialogue Dataset
Arxiv
0+阅读 · 2021年1月22日
Arxiv
4+阅读 · 2019年9月26日
Arxiv
4+阅读 · 2019年2月18日
VIP会员
相关VIP内容
专知会员服务
36+阅读 · 2020年11月29日
最新《Transformers模型》教程,64页ppt
专知会员服务
312+阅读 · 2020年11月26日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
109+阅读 · 2020年6月10日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
已删除
架构文摘
3+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
哈工大SCIR多名师生参加COLING 2018
哈工大SCIR
10+阅读 · 2018年9月1日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
论文笔记 | How NOT To Evaluate Your Dialogue System
科技创新与创业
13+阅读 · 2017年12月23日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Top
微信扫码咨询专知VIP会员