In recent years, online ride-hailing platforms have become an indispensable part of urban transportation. After a passenger is matched up with a driver by the platform, both the passenger and the driver have the freedom to simply accept or cancel a ride with one click. Hence, accurately predicting whether a passenger-driver pair is a good match turns out to be crucial for ride-hailing platforms to devise instant order assignments. However, since the users of ride-hailing platforms consist of two parties, decision-making needs to simultaneously account for the dynamics from both the driver and the passenger sides. This makes it more challenging than traditional online advertising tasks. Moreover, the amount of available data is severely imbalanced across different cities, creating difficulties for training an accurate model for smaller cities with scarce data. Though a sophisticated neural network architecture can help improve the prediction accuracy under data scarcity, the overly complex design will impede the model's capacity of delivering timely predictions in a production environment. In the paper, to accurately predict the MSR of passenger-driver, we propose the Multi-View model (MV) which comprehensively learns the interactions among the dynamic features of the passenger, driver, trip order, as well as context. Regarding the data imbalance problem, we further design the Knowledge Distillation framework (KD) to supplement the model's predictive power for smaller cities using the knowledge from cities with denser data and also generate a simple model to support efficient deployment. Finally, we conduct extensive experiments on real-world datasets from several different cities, which demonstrates the superiority of our solution.


翻译:近年来,在线乘车平台已成为城市交通不可或缺的一部分。 在乘客与平台司机匹配后,乘客和司机可以自由接受或取消乘车,因此,准确预测乘车司机配对是否对搭乘平台设计即时订单任务至关重要。但是,由于乘车平台的用户由两方组成,决策需要同时考虑司机和乘客双方的动态。这比传统的在线广告任务更具挑战性。此外,不同城市的现有数据数量严重失衡,给以稀缺数据培训一个更精确的小型城市模型造成困难。因此,精确预测客车司机搭乘平台是否对搭乘平台设计即时订单任务至关重要。然而,由于乘车平台的用户由两方组成,因此,需要同时考虑司机和乘客双方的动态。我们建议多维模式(MV)比传统的在线广告任务更具挑战性。此外,现有数据数量在不同的城市中严重失衡,为缺乏数据的小城市培训了一个精确模型。尽管复杂的神经网络架构可以帮助提高数据在数据短缺情况下进行预测的准确性,但过于复杂的设计将阻碍模型在生产中提供不同的模型支持。 我们建议多维维基模型模型模型(MV)从几个城市之间的相互作用,我们使用更精确的模型, 数据将数据在使用更精确的模型和不断的数据的模型的模型中进一步的模型,我们的数据的模型的模型的模型, 将数据作为背景。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
52+阅读 · 2021年6月30日
【阿里巴巴】 AI编译器,AI Compiler @ Alibaba,21页ppt
专知会员服务
45+阅读 · 2019年12月22日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年12月8日
Arxiv
0+阅读 · 2021年12月7日
VIP会员
相关VIP内容
专知会员服务
52+阅读 · 2021年6月30日
【阿里巴巴】 AI编译器,AI Compiler @ Alibaba,21页ppt
专知会员服务
45+阅读 · 2019年12月22日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员