It is well known that independent (separate) encoding of K correlated sources may incur some rate loss compared to joint encoding, even if the decoding is done jointly. This loss is particularly evident in the multiple descriptions problem, where the sources are repetitions of the same source, but each description must be individually good. We observe that under mild conditions about the source and distortion measure, the rate ratio Rindependent(K)/Rjoint goes to one in the limit of small rate/high distortion. Moreover, we consider the excess rate with respect to the rate-distortion function, Rindependent(K, M) - R(D), in M rounds of K independent encodings with a final distortion level D. We provide two examples - a Gaussian source with mean-squared error and an exponential source with one-sided error - for which the excess rate vanishes in the limit as the number of rounds M goes to infinity, for any fixed D and K. This result has an interesting interpretation for a multi-round variant of the multiple descriptions problem, where after each round the encoder gets a (block) feedback regarding which of the descriptions arrived: In the limit as the number of rounds M goes to infinity (i.e., many incremental rounds), the total rate of received descriptions approaches the rate-distortion function. We provide theoretical and experimental evidence showing that this phenomenon is in fact more general than in the two examples above.


翻译:众所周知,即使对 K 相关源的独立( 单独) 编码, 也可能会与联合编码相比造成一些利率损失, 即使解码是同时完成的。 这一损失在多个描述问题中特别明显, 其来源是同一源的重复, 但每个描述必须是好的。 我们观察到, 在源和扭曲测量的温和条件下, Rincont( K)/Rjoint 的比重为小率/ 高扭曲的限度内的一个比重。 此外, 我们认为, 与比率扭曲函数( Rindepend( K, M)- R(D)) 相比, 可能会发生一些利率损失。 在包含最终扭曲等级D的K 独立编码的M 回合中, 这一损失尤其明显。 我们举了两个例子 — 一个高斯语源, 其中存在平均差错, 而一个指数为一偏差的指数来源。 在M 任何固定的M 和K 级的计算中, 比率的上限为一个多层次的变量, 其中每回合之后的编码( block) 得到一个( block) 的反馈, 其中给出了多少个实验性解释。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关VIP内容
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员