In this paper, we design and present a novel model called SePEnTra to ensure the security and privacy of energy data while sharing with other entities during energy trading to determine optimal price signals. Furthermore, the market operator can use this data to detect malicious activities of users in the later stage without violating privacy (e.g., deviation of actual energy generation/consumption from forecast beyond a threshold). We use two cryptographic primitives, additive secret sharing and Pedersen commitment, in SePEnTra. The performance of our model is evaluated theoretically and numerically. We compare the performance of SePEnTra with the same Transactive energy market (TEM) framework without security mechanisms. The result shows that even though using advanced cryptographic primitives in a large market framework, SePEnTra has very low computational complexity and communication overhead. Moreover, it is storage efficient for all parties.
翻译:本文中,我们设计并提出了一种名为SePEnTra的新型模型,用于在交易能源时确保能源数据的安全和隐私。此外,市场操作员可以在后期使用这些数据检测用户的恶意活动,而不会侵犯隐私(例如,实际能源产生/消耗与预测之间的偏差超过阈值)。我们在SePEnTra中使用了两种加密原语,即加法秘密共享和Pedersen承诺。我们从理论上和数值上评估了我们模型的性能。我们将SePEnTra的性能与同一可再生能源市场(TEM)框架但不使用安全机制的框架进行了比较。结果显示,即使在较大的市场框架中使用先进的加密原语,SePEnTra的计算复杂度和通信开销都非常低。此外,对于所有各方来说,SePEnTra都是存储效率高的。