The randomized Kaczmarz (RK) algorithm is one of the most computationally and memory-efficient iterative algorithms for solving large-scale linear systems. However, practical applications often involve noisy and potentially inconsistent systems. While the convergence of RK is well understood for consistent systems, the study of RK on noisy, inconsistent linear systems is limited. This paper investigates the asymptotic behavior of RK iterates in expectation when solving noisy and inconsistent systems, addressing the locations of their limit points. We explore the roles of singular vectors of the (noisy) coefficient matrix and derive bounds on the convergence horizon, which depend on the noise levels and system characteristics. Finally, we provide extensive numerical experiments that validate our theoretical findings, offering practical insights into the algorithm's performance under realistic conditions. These results establish a deeper understanding of the RK algorithm's limitations and robustness in noisy environments, paving the way for optimized applications in real-world scientific and engineering problems.
翻译:随机Kaczmarz(RK)算法是求解大规模线性系统时计算与内存效率最高的迭代算法之一。然而,实际应用常涉及含噪声且可能不相容的线性系统。尽管RK算法在相容系统中的收敛性已得到充分研究,但其在含噪声不相容线性系统上的性能分析仍较为有限。本文研究了RK算法在求解含噪声不相容系统时期望意义下迭代序列的渐近行为,重点探讨其极限点的分布位置。我们分析了(含噪声)系数矩阵奇异向量的作用,并推导了收敛区域的边界,该边界取决于噪声水平与系统特性。最后,我们通过大量数值实验验证了理论结论,为算法在实际条件下的性能表现提供了实用见解。这些研究成果深化了对RK算法在噪声环境中的局限性及鲁棒性的理解,为优化其在实际科学与工程问题中的应用奠定了基础。