Singular Value Decomposition (SVD) and its close relative, Principal Component Analysis (PCA), are well-known linear matrix decomposition techniques that are widely used in applications such as dimension reduction and clustering. However, an important limitation of SVD/PCA is its sensitivity to noise in the input data. In this paper, we take another look at the problem of regularisation and show that different formulations of the minimisation problem lead to qualitatively different solutions.


翻译:单值分解(SVD)及其近亲属(主元件分析(PCA))是众所周知的线性矩阵分解技术,广泛用于尺寸减少和分组等应用,但是,SVD/PCA的一个重要限制是它对输入数据中的噪音的敏感度。我们在本文件中再次审视了标准化问题,并表明最小化问题的不同配方导致质量上不同的解决方案。

0
下载
关闭预览

相关内容

奇异值分解(Singular Value Decomposition)是线性代数中一种重要的矩阵分解,奇异值分解则是特征分解在任意矩阵上的推广。在信号处理、统计学等领域有重要应用。
专知会员服务
76+阅读 · 2021年3月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
5+阅读 · 2018年2月28日
Arxiv
0+阅读 · 2021年8月26日
Arxiv
9+阅读 · 2021年3月8日
Arxiv
3+阅读 · 2018年10月18日
Arxiv
9+阅读 · 2018年3月28日
VIP会员
相关资讯
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
5+阅读 · 2018年2月28日
Top
微信扫码咨询专知VIP会员