An exciting frontier in natural language understanding (NLU) and generation (NLG) calls for (vision-and-) language models that can efficiently access external structured knowledge repositories. However, many existing knowledge bases only cover limited domains, or suffer from noisy data, and most of all are typically hard to integrate into neural language pipelines. To fill this gap, we release VisualSem: a high-quality knowledge graph (KG) which includes nodes with multilingual glosses, multiple illustrative images, and visually relevant relations. We also release a neural multi-modal retrieval model that can use images or sentences as inputs and retrieves entities in the KG. This multi-modal retrieval model can be integrated into any (neural network) model pipeline. We encourage the research community to use VisualSem for data augmentation and/or as a source of grounding, among other possible uses. VisualSem as well as the multi-modal retrieval models are publicly available and can be downloaded in this URL: https://github.com/iacercalixto/visualsem


翻译:自然语言理解(NLU)和生成(NLG)的令人振奋的前沿自然语言理解(NLU)和生成(NLG)需要能够有效访问外部结构化知识库的(视觉和)语言模型。然而,许多现有知识库仅覆盖有限的领域,或受到数据噪音的影响,而且其中多数通常很难融入神经语言管道。为了填补这一空白,我们发布“视觉Sem”:高质量知识图(KG),其中包括多语言的节点、多示例图像和视觉相关关系。我们还发布一个神经多模式检索模型,可以将图像或句子用作输入和检索KG中的实体。这种多模式检索模型可以纳入任何(神经网络)示范管道。我们鼓励研究界使用“视觉Sem”来增强数据和/或作为地基来源,其他可能用途。视觉Sem以及多模式检索模型可以公开获取,并可在这个网址上下载:https://github.com/accercalixto/visalsem。

2
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【知识图谱@ACL2020】Knowledge Graphs in Natural Language Processing
专知会员服务
66+阅读 · 2020年7月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
7+阅读 · 2018年4月18日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
CSKG: The CommonSense Knowledge Graph
Arxiv
18+阅读 · 2020年12月21日
Arxiv
6+阅读 · 2019年9月4日
VIP会员
相关VIP内容
【知识图谱@ACL2020】Knowledge Graphs in Natural Language Processing
专知会员服务
66+阅读 · 2020年7月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
7+阅读 · 2018年4月18日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Top
微信扫码咨询专知VIP会员