We explain how effective automatic probability density function estimates can be constructed using contemporary Bayesian inference engines such as those based on no-U-turn sampling and expectation propagation. Extensive simulation studies demonstrate that the proposed density estimates have excellent comparative performance and scale well to very large sample sizes due a binning strategy. Moreover, the approach is fully Bayesian and all estimates are accompanied by pointwise credible intervals. An accompanying package in the R language facilitates easy use of the new density estimates.


翻译:我们解释如何利用当代贝叶斯推断引擎,例如基于无倾斜抽样和预期传播的引擎,来构建有效的自动概率密度函数估计数。广泛的模拟研究表明,拟议的密度估计数具有极好的比较性能,而且由于采用双进制战略,其规模非常大。此外,这种方法完全是巴伊斯式的,所有估计数都附有点性可靠的间隔。用R语制作的配套软件便于使用新的密度估计数。

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2020年9月7日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年4月19日
Arxiv
110+阅读 · 2020年2月5日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关VIP内容
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员