Software developers often rely on natural language text that appears in software engineering artifacts to access critical information as they build and work on software systems. For example, developers access requirements documents to understand what to build, comments in source code to understand design decisions, answers to questions on Q&A sites to understand APIs, and so on. To aid software developers in accessing and using this natural language information, software engineering researchers often use techniques from natural language processing. In this paper, we explore whether frame semantics, a general linguistic approach, which has been used on requirements text, can also help address problems that occur when applying lexicon analysis based techniques to text associated with program comprehension activities. We assess the applicability of generic semantic frame parsing for this purpose, and based on the results, we propose SEFrame to tailor semantic frame parsing for program comprehension uses. We evaluate the correctness and robustness of the approach finding that SEFrame is correct in between 73% and 74% of the cases and that it can parse text from a variety of software artifacts used to support program comprehension. We describe how this approach could be used to enhance existing approaches to identify meaning on intention from software engineering texts.


翻译:软件开发者往往依靠软件工程工艺品中出现的自然语言文字来获取关键信息。 例如,开发者在软件系统建设和工作时,往往依靠软件工程工艺品中出现的自然语言文字来获取关键信息。例如,开发者获取要求文件来理解构建什么,在源代码中进行评论以理解设计决定,回答在 ⁇ A 站点上的问题以理解API 等。为了帮助软件开发者获取和使用这种自然语言信息,软件工程研究人员经常使用来自自然语言处理的技术。在本文中,我们探索框架语义(一种通用语言方法,在要求文本中已经使用过)能否帮助解决在将基于词汇的分析技术的文字应用于与程序理解活动相关的文本时出现的问题。我们评估通用语义框架用于此目的的可适用性,并根据结果,我们建议SEFBrame, 来调整用于程序理解用途的语义框架。我们评估SEFrame的正确性和稳健性方法,发现SEFrame在73%到74%的案件中是正确的,并且它能够从支持程序理解的各种软件工艺品中解析出文本。我们打算如何加强现有方法。我们如何用这个方法来鉴别。我们描述了。我们想用这个方法如何加强现有方法。

0
下载
关闭预览

相关内容

专知会员服务
37+阅读 · 2021年4月27日
【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
38+阅读 · 2020年11月20日
专知会员服务
60+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
5+阅读 · 2018年1月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Arxiv
0+阅读 · 2021年7月2日
Semantics of Data Mining Services in Cloud Computing
Arxiv
4+阅读 · 2018年10月5日
Knowledge Based Machine Reading Comprehension
Arxiv
4+阅读 · 2018年9月12日
VIP会员
相关VIP内容
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
5+阅读 · 2018年1月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Top
微信扫码咨询专知VIP会员