Wasserstein gradient and Hamiltonian flows have emerged as essential tools for modeling complex dynamics in the natural sciences, with applications ranging from partial differential equations (PDEs) and optimal transport to quantum mechanics and information geometry. Despite their significance, the inverse identification of potential functions and interaction kernels underlying these flows remains relatively unexplored. In this work, we tackle this challenge by addressing the inverse problem of simultaneously recovering the potential function and interaction kernel from discretized observations of the density flow. We formulate the problem as an optimization task that minimizes a loss function specifically designed to enforce the underlying variational structure of Wasserstein flows, ensuring consistency with the geometric properties of the density manifold. Our framework employs a kernel-based operator approach using the associated Reproducing Kernel Hilbert Space (RKHS), which provides a closed-form representation of the unknown components. Furthermore, a comprehensive error analysis is conducted, providing convergence rates under adaptive regularization parameters as the temporal and spatial discretization mesh sizes tend to zero. Finally, a stability analysis is presented to bridge the gap between discrete trajectory data and continuous-time flow dynamics for the Wasserstein Hamiltonian flow.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Optimization for deep learning: theory and algorithms
Arxiv
106+阅读 · 2019年12月19日
VIP会员
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员