Traffic anomaly detection has played a crucial role in Intelligent Transportation System (ITS). The main challenges of this task lie in the highly diversified anomaly scenes and variational lighting conditions. Although much work has managed to identify the anomaly in homogenous weather and scene, few resolved to cope with complex ones. In this paper, we proposed a dual-modality modularized methodology for the robust detection of abnormal vehicles. We introduced an integrated anomaly detection framework comprising the following modules: background modeling, vehicle tracking with detection, mask construction, Region of Interest (ROI) backtracking, and dual-modality tracing. Concretely, we employed background modeling to filter the motion information and left the static information for later vehicle detection. For the vehicle detection and tracking module, we adopted YOLOv5 and multi-scale tracking to localize the anomalies. Besides, we utilized the frame difference and tracking results to identify the road and obtain the mask. In addition, we introduced multiple similarity estimation metrics to refine the anomaly period via backtracking. Finally, we proposed a dual-modality bilateral tracing module to refine the time further. The experiments conducted on the Track 4 testset of the NVIDIA 2021 AI City Challenge yielded a result of 0.9302 F1-Score and 3.4039 root mean square error (RMSE), indicating the effectiveness of our framework.
翻译:在智能运输系统(ITS)中,交通异常现象的探测发挥了关键作用。这项任务的主要挑战在于异常场景和不同照明条件的高度多样化。尽管我们做了许多工作,设法查明同质天气和场景的异常现象,但很少有人决心应付复杂的气候和场景。在本文件中,我们提出了一种双模式模块化模式化方法,以有力探测异常车辆。我们采用了一个综合异常现象检测框架,其中包括以下模块:背景模型、车辆与探测的跟踪、遮罩建筑、利益区反跟踪和双向跟踪。具体地说,我们利用背景模型来过滤运动信息并将静态信息留待以后的车辆检测。对于车辆的检测和跟踪模块,我们采用了YOLOv5和多级跟踪来将异常现象本地化。此外,我们利用框架差异和跟踪结果来查明道路并获取面具。此外,我们还采用了多个相似的估算指标,以通过回溯跟踪改进异常时期。最后,我们提出了双重模式双边跟踪模块,以进一步改进时间。我们为车辆检测和跟踪模块2号系统测试模型测试了ATRA3-RMISMRMRMRMRMRMF的轨道结果。