Contrastive learning has emerged as a cornerstone of unsupervised representation learning across vision, language, and graph domains, with InfoNCE as its dominant objective. Despite its empirical success, the theoretical underpinnings of InfoNCE remain limited. In this work, we introduce an explicit feature space to model augmented views of samples and a transition probability matrix to capture data augmentation dynamics. We demonstrate that InfoNCE optimizes the probability of two views sharing the same source toward a constant target defined by this matrix, naturally inducing feature clustering in the representation space. Leveraging this insight, we propose Scaled Convergence InfoNCE (SC-InfoNCE), a novel loss function that introduces a tunable convergence target to flexibly control feature similarity alignment. By scaling the target matrix, SC-InfoNCE enables flexible control over feature similarity alignment, allowing the training objective to better match the statistical properties of downstream data. Experiments on benchmark datasets, including image, graph, and text tasks, show that SC-InfoNCE consistently achieves strong and reliable performance across diverse domains.


翻译:对比学习已成为视觉、语言和图领域无监督表示学习的基石,其中InfoNCE是其主导目标。尽管其经验上取得了成功,但InfoNCE的理论基础仍然有限。在本研究中,我们引入了一个显式特征空间来建模样本的增强视图,以及一个转移概率矩阵来捕捉数据增强的动态。我们证明,InfoNCE将两个视图共享同一源的概率优化为由此矩阵定义的恒定目标,从而在表示空间中自然地诱导特征聚类。基于这一见解,我们提出了Scaled Convergence InfoNCE(SC-InfoNCE),这是一种新颖的损失函数,引入了可调的收敛目标以灵活控制特征相似性对齐。通过缩放目标矩阵,SC-InfoNCE能够灵活调控特征相似性对齐,使训练目标更好地匹配下游数据的统计特性。在包括图像、图和文本任务的基准数据集上的实验表明,SC-InfoNCE在不同领域中均能持续实现强大且可靠的性能。

0
下载
关闭预览

相关内容

本话题关于日常用语「概率」,用于讨论生活中的运气、机会,及赌博、彩票、游戏中的「技巧」。关于抽象数学概念「概率」的讨论,请转 概率(数学)话题。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
17+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
16+阅读 · 2023年6月6日
Arxiv
16+阅读 · 2022年11月1日
Arxiv
53+阅读 · 2018年12月11日
Arxiv
25+阅读 · 2018年1月24日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
16+阅读 · 2023年6月6日
Arxiv
16+阅读 · 2022年11月1日
Arxiv
53+阅读 · 2018年12月11日
Arxiv
25+阅读 · 2018年1月24日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
17+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员