Foundational marked temporal point process (MTPP) models, such as the Hawkes process, often use inexpressive model families in order to offer interpretable parameterizations of event data. On the other hand, neural MTPPs models forego this interpretability in favor of absolute predictive performance. In this work, we present a new family MTPP models: the hyper Hawkes process (HHP), which aims to be as flexible and performant as neural MTPPs, while retaining interpretable aspects. To achieve this, the HHP extends the classical Hawkes process to increase its expressivity by first expanding the dimension of the process into a latent space, and then introducing a hypernetwork to allow time- and data-dependent dynamics. These extensions define a highly performant MTPP family, achieving state-of-the-art performance across a range of benchmark tasks and metrics. Furthermore, by retaining the linearity of the recurrence, albeit now piecewise and conditionally linear, the HHP also retains much of the structure of the original Hawkes process, which we exploit to create direct probes into how the model creates predictions. HHP models therefore offer both state-of-the-art predictions, while also providing an opportunity to ``open the box'' and inspect how predictions were generated.
翻译:基础的标记时序点过程模型,例如霍克斯过程,通常采用表达能力有限的模型族,以便为事件数据提供可解释的参数化表征。另一方面,神经标记时序点过程模型则放弃了这种可解释性,以追求绝对的预测性能。在本研究中,我们提出了一种新的标记时序点过程模型族:超霍克斯过程,其目标是在保持可解释性的同时,达到与神经标记时序点过程模型相当的灵活性和性能。为实现这一目标,HHP扩展了经典霍克斯过程,首先将过程维度扩展至潜在空间,随后引入超网络以实现时间与数据依赖的动态特性,从而显著提升其表达能力。这些扩展定义了一个高性能的标记时序点过程模型族,在一系列基准任务和指标上均达到了最先进的性能水平。此外,通过保持递推关系的线性特性(尽管现在是分段条件线性),HHP保留了原始霍克斯过程的大部分结构特征,我们利用这一特性构建了直接探查模型预测生成机制的探针。因此,HHP模型既能提供最先进的预测结果,同时也为“打开黑箱”并检视预测生成过程提供了可能。