Localization of a wireless mobile device or a robot in indoor and GPS-denied environments is a difficult problem, particularly in dynamic scenarios where traditional cameras and LIDAR-based alternative sensing and localization modalities may fail. We propose a method for estimating the location of a mobile robot in relation to static wireless sensor nodes (WSN) deployed in the environment. The method employs a novel particle filter that updates its weights using a Gauss probability over Direction of Arrival (DOA) estimate in conjunction with the mobile robot's mobility model. We evaluate and validate the proposed method in terms of accuracy and computational efficiency through extensive simulations and public real-world measurement datasets, comparing with standard state-of-the-art localization approaches. The results show considerably high meter-level localization accuracy balanced by the high computational efficiency, enabling it to use online without a need for a dedicated offline phase as in typical fingerprint-based localization algorithms.
翻译:在室内和全球定位系统封闭的环境中,无线移动装置或机器人的本地化是一个困难的问题,特别是在一些动态情况下,传统相机和基于LIDAR的替代遥感和本地化模式可能失败。我们建议了一种方法,用以估计移动机器人相对于在环境中部署的静态无线传感器节点的位置。这种方法使用一种新型粒子过滤器,利用高分比到目的地估计值的概率来更新其重量。我们通过广泛的模拟和公用真实世界测量数据集来评估和验证在准确性和计算效率方面拟议方法,并与标准的最新本地化方法进行比较。结果显示,高计算效率平衡了相当高的计量级本地化精度,使其能够在网上使用,而不必像典型的指纹本地化算法那样,专门使用离线阶段。