We present a novel method, called CenterPoly, for real-time instance segmentation using bounding polygons. We apply it to detect road users in dense urban environments, making it suitable for applications in intelligent transportation systems like automated vehicles. CenterPoly detects objects by their center keypoint while predicting a fixed number of polygon vertices for each object, thus performing detection and segmentation in parallel. Most of the network parameters are shared by the network heads, making it fast and lightweight enough to run at real-time speed. To properly convert mask ground-truth to polygon ground-truth, we designed a vertex selection strategy to facilitate the learning of the polygons. Additionally, to better segment overlapping objects in dense urban scenes, we also train a relative depth branch to determine which instances are closer and which are further, using available weak annotations. We propose several models with different backbones to show the possible speed / accuracy trade-offs. The models were trained and evaluated on Cityscapes, KITTI and IDD and the results are reported on their public benchmark, which are state-of-the-art at real-time speeds. Code is available at https://github.com/hu64/CenterPoly


翻译:我们提出了一个新颖的方法,称为CenterPolly,用于使用捆绑多边形进行实时实例分割。我们应用它来探测密集城市环境中的道路使用者,使之适合用于智能运输系统,例如自动车辆。CenterPolly通过中央键点探测物体,同时预测每个物体的固定多边顶点数量,从而同时进行探测和分割。大多数网络参数由网络负责人共享,使其快速和轻度足以实时运行。为了适当地将掩码地面图象转换为多边地面图象,我们设计了一个脊椎选择战略,以便利多边线的学习。此外,为了在密集城市环境中更好地进行分块重叠,我们还训练一个相对深度的分支,以便利用现有的微弱说明,确定哪些情况更加接近和进一步。我们提出了几个具有不同主干线的模型,以显示可能的速度/准确交易。这些模型在城市景象、KITTI和IDD上经过训练和评估,其结果在公共基准上被报告,这些基准是状态-art/Pocreportly at at at is real-prial-creal-cretimeal-cal Codeal.

0
下载
关闭预览

相关内容

专知会员服务
21+阅读 · 2021年7月28日
图像分割方法综述
专知会员服务
54+阅读 · 2020年11月22日
专知会员服务
109+阅读 · 2020年3月12日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
论文 | YOLO(You Only Look Once)目标检测
七月在线实验室
14+阅读 · 2017年12月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
S4Net: Single Stage Salient-Instance Segmentation
Arxiv
10+阅读 · 2019年4月10日
TensorMask: A Foundation for Dense Object Segmentation
Arxiv
10+阅读 · 2019年3月28日
Arxiv
7+阅读 · 2018年12月10日
Arxiv
3+阅读 · 2018年3月5日
VIP会员
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
论文 | YOLO(You Only Look Once)目标检测
七月在线实验室
14+阅读 · 2017年12月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Top
微信扫码咨询专知VIP会员