The proliferation of radical online communities and their violent offshoots has sparked great societal concern. However, the current practice of banning such communities from mainstream platforms has unintended consequences: (I) the further radicalization of their members in fringe platforms where they migrate; and (ii) the spillover of harmful content from fringe back onto mainstream platforms. Here, in a large observational study on two banned subreddits, r/The\_Donald and r/fatpeoplehate, we examine how factors associated with the RECRO radicalization framework relate to users' migration decisions. Specifically, we quantify how these factors affect users' decisions to post on fringe platforms and, for those who do, whether they continue posting on the mainstream platform. Our results show that individual-level factors, those relating to the behavior of users, are associated with the decision to post on the fringe platform. Whereas social-level factors, users' connection with the radical community, only affect the propensity to be coactive on both platforms. Overall, our findings pave the way for evidence-based moderation policies, as the decisions to migrate and remain coactive amplify unintended consequences of community bans.


翻译:激进的在线社群及其暴力分支的激增引起了巨大的社会关注。然而,目前禁止这些社群进入主流平台的做法产生了意想不到的后果:(一) 其成员在他们移徙的边缘平台上进一步激进化;以及(二) 有害内容从边缘向主流平台蔓延。这里,在对两个被禁止的子编辑(r/The ⁇ Donald和r/fatpeopulhate)的大型观察研究中,我们研究了RECRO激进化框架的相关因素如何与用户的移民决定相关。具体地说,我们量化这些因素如何影响用户在边缘平台上发布的决定,以及对于是否在主流平台上继续发布的决定。我们的结果显示,个人层面的因素,即与用户行为有关的因素,与在边缘平台上发布的决定相关联。而社会层面的因素,用户与激进社群的联系,只影响两个平台上互动的倾向。总体而言,我们的调查结果为基于证据的温和政策铺平了道路,因为决定是迁移和继续积极扩大社区禁令的意外后果。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年2月8日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
110+阅读 · 2020年2月5日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员