Consider an undirected graph $G=(V,E)$. A subgraph of $G$ is a subset of its edges, whilst an orientation of $G$ is an assignment of a direction to each edge. Provided with an integer circulation-demand $d:V\to \mathbb{Z}$, we show an explicit and efficiently computable bijection between subgraphs of $G$ on which a $d$-flow exists and orientations on which a $d$-flow exists. Moreover, given a cost function $w:E\to (0,\infty)$ we can find such a bijection which preserves the $w$-min-cost-flow. In 2013, Kozma and Moran showed, using dimensional methods, that the number of subgraphs $k$-connecting a vertex $s$ to a vertex $t$ is the same as the number of orientations $k$-connecting $s$ to $t$. An application of our result is an efficient, bijective proof of this fact.
翻译:考虑一个未定向的图表$G=( V, E) 美元。 $G$的子集是其边缘的子集, 而以$G$为方向的定位是对每个边缘的指定方向。 提供一个整数循环需求 $d: V\ to\ mathbb ⁇ $, 我们用维度方法显示, 美元流和美元流存在方向之间的一个明确和高效的可计算参数。 此外, 如果成本函数为 $w: E\ to ( 0,\ infty) 美元, 我们能找到这样一个保存美元- 最低成本流的双点。 2013年, Kozma 和 Moran 使用维度方法显示, 将一个脊椎美元与一个脊椎美元连接起来的子集 $k美元数与 美元与 美元与美元 美元 美元 相连接的定向数相同。 我们的结果应用了这个事实的高效、 双向证据。