With impressive results in applications relying on feature learning, deep learning has also blurred the line between algorithm and data. Pick a training dataset, pick a backbone network for feature extraction, and voil\`a ; this usually works for a variety of use cases. But the underlying hypothesis that there exists a training dataset matching the use case is not always met. Moreover, the demand for interconnections regardless of the variations of the content calls for increasing generalization and robustness in features. An interesting application characterized by these problematics is the connection of historical and cultural databases of images. Through the seemingly simple task of instance retrieval, we propose to show that it is not trivial to pick features responding well to a panel of variations and semantic content. Introducing a new enhanced version of the Alegoria benchmark, we compare descriptors using the detailed annotations. We further give insights about the core problems in instance retrieval, testing four state-of-the-art additional techniques to increase performance.
翻译:在基于特征学习的应用中,深层次的学习也模糊了算法和数据之间的界限。 选择一个培训数据集, 选择一个用于特征提取和 voil ⁇ a 的骨干网络; 这通常适用于各种使用案例。 但是, 存在一个与使用案例匹配的培训数据集这一基本假设并不总是得到满足。 此外, 无论内容内容的变化如何, 互连的需求要求提高特征的概括性和稳健性。 这些问题的一个有趣应用特征是图像的历史和文化数据库的连接。 我们提议通过实例检索这一似乎简单的任务, 显示选取一些功能对一个变异和语义内容小组反应良好并非微不足道。 引入一个新的强化版本的阿列高亚基准, 我们用详细的说明来比较描述符。 我们进一步洞察实例检索中的核心问题,测试四种最先进的额外技术来提高性能。