Index coding employs coding across clients within the same broadcast domain. This typically assumes that all clients learn the coding matrix so that they can decode and retrieve their requested data. However, learning the coding matrix can pose privacy concerns: it may enable clients to infer information about the requests and side information of other clients [1]. In this paper, we formalize the intuition that the achieved privacy can increase by decreasing the number of rows of the coding matrix that a client learns. Based on this, we propose the use of $k$-limited-access schemes: given an index coding scheme that employs $T$ transmissions, we create a $k$-limited-access scheme with $T_k\geq T$ transmissions, and with the property that each client learns at most $k$ rows of the coding matrix to decode its message. We derive upper and lower bounds on $T_k$ for all values of $k$, and develop deterministic designs for these schemes for which $T_k$ has an order-optimal exponent for some regimes.
翻译:在同一广播域内, 索引编码使用不同客户的编码。 这通常假设所有客户都学习编码矩阵, 以便解码和检索要求的数据。 但是, 学习编码矩阵可能会引起隐私问题: 它可能使客户能够推断关于其他客户的请求和侧端信息的信息[1]。 在本文中, 我们正式确定直觉, 通过减少客户学习的编码矩阵的行数, 实现的隐私可以增加。 基于此, 我们提议使用 $k$- 有限访问方案 : 根据使用 $T$ 传输的索引编码方案, 我们用 $T_k\kgeq T 传输来创建 $k$- 有限访问方案, 并使用 $T_ k$ 和 每个客户在最多以 $k$ 代码矩阵的行学习来解码信息的财产 。 我们以$T_ k$ 的上下限, 并开发这些方案的确定性设计, $T_ k$ 有某些制度的排序优化前缀 。