In empathetic conversations, humans express their empathy to others with empathetic intents. However, most existing empathetic conversational methods suffer from a lack of empathetic intents, which leads to monotonous empathy. To address the bias of the empathetic intents distribution between empathetic dialogue models and humans, we propose a novel model to generate empathetic responses with human-consistent empathetic intents, EmpHi for short. Precisely, EmpHi learns the distribution of potential empathetic intents with a discrete latent variable, then combines both implicit and explicit intent representation to generate responses with various empathetic intents. Experiments show that EmpHi outperforms state-of-the-art models in terms of empathy, relevance, and diversity on both automatic and human evaluation. Moreover, the case studies demonstrate the high interpretability and outstanding performance of our model.
翻译:在同情性对话中,人类表达对具有同情意图的其他人的同情,然而,大多数现有的同情性对话方法都缺乏同情意图,从而导致单一的同情。为了解决同情性对话模式和人类之间分配的同情意图的偏向,我们提出了一个新模式,用人与人之间一致的同情意图来产生同情性反应。确切地说,Emphi学会了潜在的同情意图与离散的潜在变量的分布,然后将隐含和明确的意图表达结合起来,用各种同情性意图来产生反应。实验表明,Emphi在同情、相关性和多样性两方面都超越了最先进的模式。此外,案例研究表明,我们的模型具有很高的可解释性和杰出的性能。