Video Question Answering (VQA) is a recent emerging challenging task in the field of Computer Vision. Several visual information retrieval techniques like Video Captioning/Description and Video-guided Machine Translation have preceded the task of VQA. VQA helps to retrieve temporal and spatial information from the video scenes and interpret it. In this survey, we review a number of methods and datasets for the task of VQA. To the best of our knowledge, no previous survey has been conducted for the VQA task.


翻译:视频问题解答(VQA)是计算机视野领域最近一项新出现的挑战性任务,在VQA的任务之前,一些视觉信息检索技术,如视频说明/描述和视频制导机器翻译。VQA帮助从视频场段检索和解释时间和空间信息。在这次调查中,我们审查了用于VQA任务的若干方法和数据集。据我们所知,以前没有就VQA任务进行过任何调查。

1
下载
关闭预览

相关内容

视觉问答(Visual Question Answering,VQA),是一种涉及计算机视觉和自然语言处理的学习任务。这一任务的定义如下: A VQA system takes as input an image and a free-form, open-ended, natural-language question about the image and produces a natural-language answer as the output[1]。 翻译为中文:一个VQA系统以一张图片和一个关于这张图片形式自由、开放式的自然语言问题作为输入,以生成一条自然语言答案作为输出。简单来说,VQA就是给定的图片进行问答。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
一文读懂Attention机制
机器学习与推荐算法
63+阅读 · 2020年6月9日
一文纵览 Vision-and-Language 领域最新研究与进展
AI科技评论
7+阅读 · 2019年5月14日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
论文浅尝 | Question Answering over Freebase
开放知识图谱
18+阅读 · 2018年1月9日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Arxiv
5+阅读 · 2018年3月16日
Arxiv
9+阅读 · 2016年10月27日
VIP会员
相关资讯
一文读懂Attention机制
机器学习与推荐算法
63+阅读 · 2020年6月9日
一文纵览 Vision-and-Language 领域最新研究与进展
AI科技评论
7+阅读 · 2019年5月14日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
论文浅尝 | Question Answering over Freebase
开放知识图谱
18+阅读 · 2018年1月9日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Top
微信扫码咨询专知VIP会员