Human-autonomy teaming (HAT) scenarios feature humans and autonomous agents collaborating to meet a shared goal. For effective collaboration, the agents must be transparent and able to share important information about their operation with human teammates. We address the challenge of transparency for Belief-Desire-Intention agents defined in the Conceptual Agent Notation (CAN) language. We extend the semantics to model agents that are observable (i.e. the internal state of tasks is available), and attention-directing (i.e. specific states can be flagged to users), and provide an executable semantics via an encoding in Milner's bigraphs. Using an example of unmanned aerial vehicles, the BigraphER tool, and PRISM, we show and verify how the extensions work in practice.
翻译:人类自主团队(HAT)情景以人类和自主代理为主,为实现共同目标而开展合作。为了有效合作,代理机构必须透明,能够与人类团队共享有关其行动的重要信息。我们应对概念性符号(CAN)语言中定义的信仰-分裂-意向代理机构的透明度挑战。我们把语义扩展至可观测到(即有内部任务状态)和关注导向(即特定国家可以向用户示意)的模型代理机构,并通过Milner的传记编码提供可执行的语义。我们以无人驾驶飞行器、图书浏览器工具和PRISM为例,展示并验证扩展的操作方式。