In this work, we develop a game-theoretic modeling of the interaction between a human operator and an autonomous decision aid when they collaborate in a multi-agent task allocation setting. In this setting, we propose a decision aid that is designed to calibrate the operator's reliance on the aid through a sequence of interactions to improve overall human-autonomy team performance. The autonomous decision aid employs a long short-term memory (LSTM) neural network for human action prediction and a Bayesian parameter filtering method to improve future interactions, resulting in an aid that can adapt to the dynamics of human reliance. The proposed method is then tested against a large set of simulated human operators from the choice prediction competition (CPC18) data set, and shown to significantly improve human-autonomy interactions when compared to a myopic decision aid that only suggests predicted human actions without an understanding of reliance.


翻译:在这项工作中,我们开发了人类操作者与自主决策援助在多试剂任务分配环境中进行合作时相互作用的游戏理论模型。在这个环境中,我们提议了一种决策援助,旨在通过一系列互动来调整操作者对援助的依赖,以提高人类自主团队的整体性能。自主决策援助使用长期短期记忆(LSTM)神经网络用于人类行动预测,以及一种贝叶斯参数过滤方法来改进未来的相互作用,从而产生一种能够适应人类依赖动态的援助。然后,根据选择预测竞赛(CPC18数据集)的大批模拟人类操作者测试了拟议方法,并表明,与仅暗示不理解依赖的预测人类行动的近视决策援助相比,将显著改善人类自主互动。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
《行为与认知机器人学》,241页pdf
专知会员服务
54+阅读 · 2021年4月11日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
论文笔记 | VAIN: Attentional Multi-agent Predictive Modeling
科技创新与创业
4+阅读 · 2017年12月10日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
VIP会员
相关VIP内容
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
论文笔记 | VAIN: Attentional Multi-agent Predictive Modeling
科技创新与创业
4+阅读 · 2017年12月10日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员