In today's era of digital misinformation, we are increasingly faced with new threats posed by video falsification techniques. Such falsifications range from cheapfakes (e.g., lookalikes or audio dubbing) to deepfakes (e.g., sophisticated AI media synthesis methods), which are becoming perceptually indistinguishable from real videos. To tackle this challenge, we propose a multi-modal semantic forensic approach to discover clues that go beyond detecting discrepancies in visual quality, thereby handling both simpler cheapfakes and visually persuasive deepfakes. In this work, our goal is to verify that the purported person seen in the video is indeed themselves by detecting anomalous correspondences between their facial movements and the words they are saying. We leverage the idea of attribution to learn person-specific biometric patterns that distinguish a given speaker from others. We use interpretable Action Units (AUs) to capture a persons' face and head movement as opposed to deep CNN visual features, and we are the first to use word-conditioned facial motion analysis. Unlike existing person-specific approaches, our method is also effective against attacks that focus on lip manipulation. We further demonstrate our method's effectiveness on a range of fakes not seen in training including those without video manipulation, that were not addressed in prior work.


翻译:在当今数字错误信息时代,我们日益面临视频伪造技术带来的新威胁。这些伪造手段包括廉价假象(如外观或音响假象)和深假(如复杂的AI媒体合成方法),这些假象与真实的视频有着明显的分辨。为了应对这一挑战,我们提议采用多种现代语义法法医学方法来发现超越发现视觉质量差异的线索,从而既处理简单的廉价假冒,又处理视觉上具有说服力的深刻假冒。在这项工作中,我们的目标是核实视频中看到的人确实是自己,通过发现其面部运动和他们所说的话之间的反常通信。我们利用归属概念来学习区分特定发言人和其他人的特有生物学模式。我们使用可解释行动股来捕捉一个人的脸和头部,而不是深层CNN视觉特征,我们首先使用有文字限制的面部动作分析。与现有的针对特定个人的方法不同,我们的方法本身确实是通过探测其面部运动和言词的反常识。我们利用这种方法来有效防止攻击行为,我们没有在事先进行假操作时,我们没有看到这种假操作的方法。

0
下载
关闭预览

相关内容

专知会员服务
33+阅读 · 2021年9月16日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
人工智能 | 国际会议信息6条
Call4Papers
5+阅读 · 2019年1月4日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Arxiv
20+阅读 · 2020年6月8日
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
Video-to-Video Synthesis
Arxiv
9+阅读 · 2018年8月20日
Arxiv
7+阅读 · 2018年3月19日
VIP会员
相关资讯
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
人工智能 | 国际会议信息6条
Call4Papers
5+阅读 · 2019年1月4日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员