With the phenomenal success of diffusion models and ChatGPT, deep generation models (DGMs) have been experiencing explosive growth from 2022. Not limited to content generation, DGMs are also widely adopted in Internet of Things, Metaverse, and digital twin, due to their outstanding ability to represent complex patterns and generate plausible samples. In this article, we explore the applications of DGMs in a crucial task, i.e., improving the efficiency of wireless network management. Specifically, we firstly overview the generative AI, as well as three representative DGMs. Then, a DGM-empowered framework for wireless network management is proposed, in which we elaborate the issues of the conventional network management approaches, why DGMs can address them efficiently, and the step-by-step workflow for applying DGMs in managing wireless networks. Moreover, we conduct a case study on network economics, using the state-of-the-art DGM model, i.e., diffusion model, to generate effective contracts for incentivizing the mobile AI-Generated Content (AIGC) services. Last but not least, we discuss important open directions for the further research.


翻译:随着扩散模型和ChatGPT的极其成功,深度生成模型(DGM)自2022年以来一直经历着爆炸式增长。DGM不仅限于内容生成,还广泛应用于物联网、元宇宙和数字孪生模型,由于它们代表复杂模式和生成合理样本的杰出能力。在本文中,我们探讨了DGM在一项关键任务中的应用,即提高无线网络管理的效率。具体而言,首先概述了生成AI以及三种具有代表性的DGM。然后,提出了一种由DGM驱动的无线网络管理框架,在其中详细说明了传统网络管理方法的问题,DGM为何能够有效地解决这些问题以及应用DGM在管理无线网络方面的逐步工作流程。此外,我们使用最先进的DGM模型——扩散模型,在网络经济学方面进行了案例研究,生成了激励移动AI-Generated Content (AIGC)服务的有效合约。最后但并非最不重要的是,我们讨论了进一步研究的重要开放方向。

0
下载
关闭预览

相关内容

深度生成模型基本都是以某种方式寻找并表达(多变量)数据的概率分布。有基于无向图模型(马尔可夫模型)的联合概率分布模型,另外就是基于有向图模型(贝叶斯模型)的条件概率分布。前者的模型是构建隐含层(latent)和显示层(visible)的联合概率,然后去采样。基于有向图的则是寻找latent和visible之间的条件概率分布,也就是给定一个随机采样的隐含层,模型可以生成数据。 生成模型的训练是一个非监督过程,输入只需要无标签的数据。除了可以生成数据,还可以用于半监督的学习。
ChatGPT如何work的?最新《大型语言模型》综述,51页slides
专知会员服务
161+阅读 · 2023年2月28日
【RecSys22教程】多阶段推荐系统的神经重排序,90页ppt
专知会员服务
25+阅读 · 2022年9月30日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
最新《Transformers模型》教程,64页ppt
专知会员服务
306+阅读 · 2020年11月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
10+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Generative Adversarial Networks: A Survey and Taxonomy
VIP会员
相关VIP内容
ChatGPT如何work的?最新《大型语言模型》综述,51页slides
专知会员服务
161+阅读 · 2023年2月28日
【RecSys22教程】多阶段推荐系统的神经重排序,90页ppt
专知会员服务
25+阅读 · 2022年9月30日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
最新《Transformers模型》教程,64页ppt
专知会员服务
306+阅读 · 2020年11月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
10+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员