With the phenomenal success of diffusion models and ChatGPT, deep generation models (DGMs) have been experiencing explosive growth from 2022. Not limited to content generation, DGMs are also widely adopted in Internet of Things, Metaverse, and digital twin, due to their outstanding ability to represent complex patterns and generate plausible samples. In this article, we explore the applications of DGMs in a crucial task, i.e., improving the efficiency of wireless network management. Specifically, we firstly overview the generative AI, as well as three representative DGMs. Then, a DGM-empowered framework for wireless network management is proposed, in which we elaborate the issues of the conventional network management approaches, why DGMs can address them efficiently, and the step-by-step workflow for applying DGMs in managing wireless networks. Moreover, we conduct a case study on network economics, using the state-of-the-art DGM model, i.e., diffusion model, to generate effective contracts for incentivizing the mobile AI-Generated Content (AIGC) services. Last but not least, we discuss important open directions for the further research.
翻译:随着扩散模型和ChatGPT的极其成功,深度生成模型(DGM)自2022年以来一直经历着爆炸式增长。DGM不仅限于内容生成,还广泛应用于物联网、元宇宙和数字孪生模型,由于它们代表复杂模式和生成合理样本的杰出能力。在本文中,我们探讨了DGM在一项关键任务中的应用,即提高无线网络管理的效率。具体而言,首先概述了生成AI以及三种具有代表性的DGM。然后,提出了一种由DGM驱动的无线网络管理框架,在其中详细说明了传统网络管理方法的问题,DGM为何能够有效地解决这些问题以及应用DGM在管理无线网络方面的逐步工作流程。此外,我们使用最先进的DGM模型——扩散模型,在网络经济学方面进行了案例研究,生成了激励移动AI-Generated Content (AIGC)服务的有效合约。最后但并非最不重要的是,我们讨论了进一步研究的重要开放方向。