The physics-based simulation game Angry Birds has been heavily researched by the AI community over the past five years, and has been the subject of a popular AI competition that is currently held annually as part of a leading AI conference. Developing intelligent agents that can play this game effectively has been an incredibly complex and challenging problem for traditional AI techniques to solve, even though the game is simple enough that any human player could learn and master it within a short time. In this paper we analyse how hard the problem really is, presenting several proofs for the computational complexity of Angry Birds. By using a combination of several gadgets within this game's environment, we are able to demonstrate that the decision problem of solving general levels for different versions of Angry Birds is either NP-hard, PSPACE-hard, PSPACE-complete or EXPTIME-hard. Proof of NP-hardness is by reduction from 3-SAT, whilst proof of PSPACE-hardness is by reduction from True Quantified Boolean Formula (TQBF). Proof of EXPTIME-hardness is by reduction from G2, a known EXPTIME-complete problem similar to that used for many previous games such as Chess, Go and Checkers. To the best of our knowledge, this is the first time that a single-player game has been proven EXPTIME-hard. This is achieved by using stochastic game engine dynamics to effectively model the real world, or in our case the physics simulator, as the opponent against which we are playing. These proofs can also be extended to other physics-based games with similar mechanics.


翻译:以物理为基础的模拟游戏 Angry Birds 在过去五年中,AI 社区已经对此进行了大量研究,并且是目前每年作为AI会议的一部分举行的一次全方位AI竞赛的主题。 开发能够有效玩这个游戏的智能剂对于传统的AI技术来说是一个极其复杂和具有挑战性的问题,尽管游戏非常简单,可以让任何人类玩家在短时间内学习和掌握它。 在本文中,我们分析了问题的真正难度,为Angry Birds的计算复杂性提供了一些证据。 通过结合这个游戏环境中的若干工具,我们得以证明解决Angry Birds不同版本的一般水平的决策问题。 开发PACE-hart、PSPACE-hard、PSPACE-complect 或EXPTIME-hard。 NPE的证明是3SAT的缩写,而PSPACE-broducal-blean 的证明则是从 True Qualtical-blean 公式(TBFE) 的缩写。 EXPTIME-hardence 的证明, Ex-hardeal-hardeal-hardeality 也通过GIM- creal 将我们之前的游戏的游戏的变现为GIM-creal 变现的变现的变现, 变为GIBI

0
下载
关闭预览

相关内容

CC在计算复杂性方面表现突出。它的学科处于数学与计算机理论科学的交叉点,具有清晰的数学轮廓和严格的数学格式。官网链接:https://link.springer.com/journal/37
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
人工智能 | 国际会议信息6条
Call4Papers
4+阅读 · 2019年1月4日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
The Measure of Intelligence
Arxiv
6+阅读 · 2019年11月5日
AutoML: A Survey of the State-of-the-Art
Arxiv
69+阅读 · 2019年8月14日
Arxiv
9+阅读 · 2018年5月22日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
3+阅读 · 2017年12月18日
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
人工智能 | 国际会议信息6条
Call4Papers
4+阅读 · 2019年1月4日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
相关论文
Top
微信扫码咨询专知VIP会员